ET0_helper.Rdlambda: latent heat of vaporization, about [2.5 MJ kg-1].
slope: The slope of the saturation vapour pressure curve at certain air
temperature Tair, [kPa degC-1].
gamma: psychrometric constant ([kPa degC-1]), Cp*Pa/(epsilon*lambda).
U2: 10m wind speed (m/s). According to wind profile relationship, convert U_z to U_2.
es: saturation vapor pressure (kPa)
ea: actual vapor pressure (kPa)
RH_mean | Tmin, Tmax: (es(Tmax) + es(Tmin)) * RH_mean/200
Tmin : es(Tmin)
cal_TvK: vitual temperature (K)
Tair + q
Tair + ea/Pa
1.01 * (Tair + 273) , FAO56 Eq. 3-7
cal_rho_a: air density (kg/m^3)
rH: resistance of aerodynamic (s/m), about 100 s/m.
cal_U2(Uz, z.wind = 10)
cal_ea(Tmin, Tmax = NULL, RH_mean = NULL)
cal_VPD(Tair, Tdew = NULL)
cal_lambda(Tair)
cal_slope(Tair)
cal_gamma(Tair, Pa = atm)
cal_bowen(Tair, Pa = atm)
cal_Pa(z = NULL)
cal_rH(U2, h = 0.12)
cal_rH2(U2, Tair, Pa = atm)
cal_TvK(Tair, q = NULL, ea = NULL, Pa = atm)
cal_rho_a(Tair, Pa = atm, q = NULL, ea = NULL)
cal_es(Tair)wind speed at height z.wind
Height where measure the wind speed [m]. Default 10m.
Daily minimum air temperature at 2m height [deg Celsius]
Daily maximum air temperature at 2m height [deg Celsius]
daily mean relative humidity [%]
2m air temperature, ([deg Celsius])
dew temperature, ([deg Celsius])
land surface Air pressure [kPa].
Elevation above sea level [m]. Must provided if pres
are not provided.
wind speed at 2m
canopy height (m), for the calculation of the following intermediate variables:
d: zero plane displacement height (m)
z_om: roughness length governing momentum transfer (m)
z_oh: roughness length governing transfer of heat and vapour (m)
z_h : height of humidity measurements (m)
z_m : height of wind measurements (m)
specific humidity (g/g)
actual vapor pressure (kPa)
Allen, R. G., & Luis S. Pereira. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. European Journal of Agronomy, 34(3), 144–152. doi:10.1016/j.eja.2010.12.001
cal_VPD(10, 5)
#> [1] 0.3556517
par(mfrow = c(2, 2), mar = c(3, 1.8, 2, 1), mgp = c(2, 0.6, 0))
Tair <- -10:50
plot(cal_es(-10:50), main = "es (kPa)", xlab = "Tair")
plot(cal_bowen(-10:50), main = "Bowen ratio", xlab = "Tair")
plot(cal_slope(-10:50), main = "slope (kPa/degC)", xlab = "Tair")
plot(cal_gamma(-10:50), main = "gamma (kPa/degC)", xlab = "Tair")