## Error in get(paste0(generic, ".", class), envir = get_method_env()) : ## object 'type_sum.accel' not found
library(dplyr)#+++ Add time stamp in POSIX time format and filter long runs of equal values EddyDataWithPosix<-fConvertTimeToPosix(filterLongRuns(Example_DETha98, "NEE") , 'YDH', Year ='Year', Day ='DoY', Hour ='Hour')
#+++ Add some (non-sense) example vectors:#+++ Quality flag vector (e.g. from applying ustar filter)QF<-rep(c(1, 0, 1, 0, 1, 0, 0, 0, 0, 0), nrow(EddyDataWithPosix)/10)#+++ Dummy step function vector to simulate e.g. high / low water tableStep<-ifelse(EddyDataWithPosix$DoY<200|EddyDataWithPosix$DoY>250, 0, 1)#+++ Initialize new sEddyProc processing class with more columnsEProc<-sEddyProc$new('DE-Tha', cbind(EddyDataWithPosix, Step =Step, QF =QF) , c('NEE', 'LE', 'H', 'Rg', 'Tair', 'Tsoil', 'rH', 'VPD', 'QF', 'Step'))#+++ Gap fill variable with (non-default) variables and limits# including preselection of data with quality flag QF == 0EProc$sMDSGapFill('LE', QFVar ='QF', QFValue =0, V1 ='Rg', T1 =30, V2 ='Tsoil', T2 =2 , 'Step', 0.1)#+++ Use individual gap filling subroutines with different window sizes# and up to five variables and limitsEProc$sFillInit('NEE')#Initialize 'NEE' as variable to fillResult_Step1.F<-EProc$sFillLUT(3, 'Rg', 50, 'rH', 30, 'Tair', 2.5, 'Tsoil', 2, 'Step', 0.5)Result_Step2.F<-EProc$sFillLUT(6, 'Tair', 2.5, 'VPD', 3, 'Step', 0.5)Result_Step3.F<-EProc$sFillMDC(3)#Individual fill result columns are called 'VAR_...'EProc$sPlotHHFluxesY('VAR_fall', Year =1998)
Explicit demonstration of MDS algorithm for NEE gap filling
EProcMDS<-sEddyProc$new('DE-Tha', EddyDataWithPosix, c('NEE', 'Rg', 'Tair', 'VPD'))#Initialize 'NEE' as variable to fillEProcMDS$sFillInit('NEE')# Set variables and tolerance intervalsV1='Rg'; T1=50# Global radiation 'Rg' within +/-50 W m-2V2='VPD'; T2=5# Vapour pressure deficit 'VPD' within 5 hPaV3='Tair'; T3=2.5# Air temperature 'Tair' within +/-2.5 degC# Step 1: Look-up table with window size +/-7 daysResultStep1<-EProcMDS$sFillLUT(7, V1, T1, V2, T2, V3, T3)# Step 2: Look-up table with window size +/-14 daysResultStep2<-EProcMDS$sFillLUT(14, V1, T1, V2, T2, V3, T3)# Step 3: Look-up table with window size +/-7 days, Rg onlyResultStep3<-EProcMDS$sFillLUT(7, V1, T1)# Step 4: Mean diurnal course with window size 0 (same day)ResultStep4<-EProcMDS$sFillMDC(0)# Step 5: Mean diurnal course with window size +/-1, +/-2 daysResultStep5a<-EProcMDS$sFillMDC(1)ResultStep5b<-EProcMDS$sFillMDC(2)# Step 6: Look-up table with window size +/-21, +/-28, ..., +/-70for(WinDaysinseq(21, 70, 7))ResultStep6<-EProcMDS$sFillLUT(WinDays, V1, T1, V2, T2, V3, T3)# Step 7: Look-up table with window size +/-14, +/-21, ..., +/-70, Rg onlyfor(WinDaysinseq(14, 70, 7))ResultStep7<-EProcMDS$sFillLUT(WinDays, V1, T1)# Step 8: Mean diurnal course with window size +/-7, +/-14, ..., +/-210 daysfor(WinDaysinseq(7, 210, 7))ResultStep8<-EProcMDS$sFillMDC(WinDays)# Export results, columns are named 'VAR_'FilledEddyData<-EProcMDS$sExportResults()head(FilledEddyData)