Function to create a list of parameters to be used in most of the functions of this package. Depending on the function, all the parameters are not used. For example go and g1 are not used in f.Aci.

f.make.param(
  R = NA,
  O2 = NA,
  TRef = NA,
  Patm = NA,
  JmaxRef = NA,
  JmaxHa = NA,
  JmaxHd = NA,
  JmaxS = NA,
  VcmaxRef = NA,
  VcmaxHa = NA,
  VcmaxHd = NA,
  VcmaxS = NA,
  TpRef = NA,
  TpHa = NA,
  TpHd = NA,
  TpS = NA,
  thetacj = NA,
  thetaip = NA,
  RdRef = NA,
  RdHa = NA,
  RdHd = NA,
  RdS = NA,
  KcRef = NA,
  KcHa = NA,
  KoRef = NA,
  KoHa = NA,
  GstarRef = NA,
  GstarHa = NA,
  abso = NA,
  aQY = NA,
  Theta = NA,
  model.gs = NA,
  g0 = NA,
  g1 = NA,
  power = NA
)

Arguments

R

Ideal gas constant.

O2

O2 concentration in ppm.

TRef

Reference temperature for Kc, Ko, Rd,GammaStar Vcmax, Jmax in Kelvin.

Patm

Atmospheric pressure in kPa.

JmaxRef

Maximum electron transport rate in micromol.m-2.s-1.

JmaxHa

Energy of activation for Jmax in J.mol-1.

JmaxHd

Energy of desactivation for Jmax in J.mol-1.

JmaxS

Entropy term for Jmax in J.mol-1.K-1.

VcmaxRef

Maximum rate of Rubisco for carboxylation micromol.m-2.s-1.

VcmaxHa

Energy of activation for Vcmax in J.mol-1.

VcmaxHd

Energy of desactivation for Vcmax in J.mol-1.

VcmaxS

Entropy term for Vcmax in J.mol-1.K-1.

TpRef

Triose phosphate utilization rate in micromol.m-2.s-1.

TpHa

Activation energy for Tp in J.mol-1.

TpHd

Energy of deactivation for Tp in J.mol-1.

TpS

Entropy term for Tp in J.mol-1.K-1.

thetacj

Collatz smoothing factor used to introduce a gradual transition from Ac to Aj (close to 0.999)

thetaip

Collatz smoothing factor used to introduce a gradual transition from Aj to Ap (close to 0.999)

RdRef

Respiration value at the reference temperature in micromol.m-2.s-1.

RdHa

Energie of activation for Rd in J.mol-1.

KcRef

Michaelis-Menten constant of Rubisco for CO2 at the reference temperature in micromol.mol-1.

KcHa

Energy of activation for Kc in J.mol-1.

KoRef

Michaelis-Menten constant of Rubisco for CO2 at the reference temperature in milimol.mol-1.

KoHa

Energy of activation for Ko in J.mol-1.

GstarRef

CO2 compensation point in absence of respiration in micromol.mol-1.

GstarHa

Enthalpie of activation for Gstar in J.mol-1.

abso

Absorptance of the leaf in the photosynthetic active radiation wavelenghts.

aQY

Apparent quantum yield.

Theta

Theta is the empirical curvature factor for the response of J to PFD. It takes its values between 0 and 1.

model.gs

Type of conductance model (USO, USO_simpl,BWB or Nonlinear). See f.gs documentation for more information.

g0

Constant of the conductance model, representing the conductance when A is 0, in mol.m-2.s-1, usually around 0.01.

g1

Slope parameter, between 1.14 and 3.58 KPa^0.5 (Wu et al., 2019).

power

Power of VPDl in USO model. By default power=0.5 as in Medlyn article.

Value

List of parameters that can be used in other functions of the package such as f.A, f.Aci, and f.GPP

Details

The call of this function is made using f.make.param(). If a parameter is modified, for example writing f.make.param(VcmaxRef=10), this function will return all the default parameters from FATES TBM with VcmaxRef = 10 instead of its default value

References

Bernacchi, C.J., Singsaas, E.L., Pimentel, C., Portis Jr, A.R. and Long, S.P. (2001), Improved temperature response functions for models of Rubisco‐limited photosynthesis. Plant, Cell & Environment, 24: 253-259. doi:10.1111/j.1365-3040.2001.00668.

FATES: https://fates-docs.readthedocs.io/en/latest/fates_tech_note.html.

Medlyn, B.E., Duursma, R.A., Eamus, D., Ellsworth, D.S., Colin Prentice, I., Barton, C.V.M., Crous, K.Y., de Angelis, P., Freeman, M. and Wingate, L. (2012), Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob Change Biol, 18: 3476-3476. doi:10.1111/j.1365-2486.2012.02790.x.

Leuning, R., Kelliher, F. M., De Pury, D. G. G., & Schulze, E. D. (1995). Leaf nitrogen, photosynthesis, conductance and transpiration: scaling from leaves to canopies. Plant, Cell & Environment, 18(10), 1183-1200.

Ball, J. T., Woodrow, I. E., & Berry, J. A. (1987). A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In Progress in photosynthesis research (pp. 221-224). Springer, Dordrecht.

Examples

param1=f.make.param(JmaxRef=100,VcmaxRef=60,RdRef=1,TpRef=10)
f.A(PFD=1500,cs=400,Tleaf=300,Tair=299,RH=70,param=param1)
#> $A
#> [1] 14.41699
#> 
#> $Ac
#> [1] 14.76889
#> 
#> $Aj
#> [1] 15.14176
#> 
#> $Ap
#> [1] 31.15526
#> 
#> $Ag
#> [1] 15.47302
#> 
#> $Rd
#> [1] 1.056031
#> 
#> $gs
#> [1] 0.2934012
#> 
#> $ci
#> [1] 321.2522
#> 
#> $ds
#> [1] 1201.166
#> 
#> $Transp
#> [1] 0.06280812
#>